A general extending and constraining procedure for linear iterative methods
نویسندگان
چکیده
Algebraic reconstruction techniques (ARTs), on both their successive and simultaneous formulations, have been developed since the early 1970s as efficient ‘row-action methods’for solving the image-reconstruction problem in computerized tomography. In this respect, two important development directions were concerned with, first, their extension to the inconsistent case of the reconstruction problem and, second, their combination with constraining strategies, imposed by the particularities of the reconstructed image. In the first part of this paper, we introduce extending and constraining procedures for a general iterative method of an ART type and we propose a set of sufficient assumptions that ensure the convergence of the corresponding algorithms. As an application of this approach, we prove that Cimmino’s simultaneous reflection method satisfies this set of assumptions, and we derive extended and constrained versions for it. Numerical experiments with all these versions are presented on a head phantom widely used in the image reconstruction literature. We also consider hard thresholding constraining used in sparse approximation problems and apply it successfully to a 3D particle image-reconstruction problem.
منابع مشابه
On the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملAn iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملA Three-Point Iterative Method for Solving Nonlinear Equations with High Efficiency Index
In this paper, we proposed a three-point iterative method for finding the simple roots of non- linear equations via mid-point and interpolation approach. The method requires one evaluation of the derivative and three(3) functions evaluation with efficiency index of 81/4 ≈ 1.682. Numerical results reported here, between the proposed method with some other existing methods shows that our method i...
متن کاملA new multi-step ABS model to solve full row rank linear systems
ABS methods are direct iterative methods for solving linear systems of equations, where the i-th iteration satisfies the first i equations. Thus, a system of m equations is solved in at most m ABS iterates. In 2004 and 2007, two-step ABS methods were introduced in at most [((m+1))/2] steps to solve full row rank linear systems of equations. These methods consuming less space, are more compress ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Comput. Math.
دوره 89 شماره
صفحات -
تاریخ انتشار 2012